

Introduction to
WCF 3.5 and Rest

Presented at WKB, january 2010
By Kurt Evenepoel

Introduction to WCF 3.5 and Rest 1
What do you need 3
WCF Fundamentals 3
REST Fundamentals 6
Endpoints ‘R Us 6
Exploring Your Hosting Options 10
Creating a new Service Library 11
Defining and Implementing a Contract 11
Defining Endpoints 12
The Test Client 14
Consuming the service 14

SvcUtil.exe.. ... 14
Add Service Reference.............................. ... 14

Hosting the service from console 16
Transforming the service into a REST web service 18
Returning files or large amounts of data 22
Returning a feed 23
Debugging WCF 24
Accepting data 28
Sending JSON with C# 31
Further reading 33
Glossary (from MSDN) 34

What do you need

• Visual Studio 2008 SP1
• .NET 3.5 SP1
• Windows SDK (was included in my installation: check if

you have C:\Program Files\Microsoft
SDKs\Windows\v6.0\Bin\SvcConfigEditor.exe)

Both Visual Studio and .NET need to have SP1, not o nly
.NET.

WCF Fundamentals

Since .NET 3.0 (Codename .NET FX) Microsoft has add ed lots
of new libraries to the .NET framework. One of the se is
WCF. WCF is expanded with Restful features in .NET 3.5 (C#
3.0), and integrated with Workflow Foundation and o ther
technologies. Many new .NET 3.5 technologies use W CF as
their underlying basis too. In .NET 4.0, WCF gets more
important, and in the future years to come WCF will replace
all microsoft distributed development technologies.

Windows Communication Foundation (WCF) is all about
communicating . In a stand-alone application like say XML
Spy, or Notepad you would not generally use service s.
In a business context , many dollars go into creating
systems that support the business. It’s generally accepted
that in such scenario’s, you do not want to tie a f unction
to a specific application. All applications, shoul d they
need that specific function, should be able to re-u se it.
You can do this by distributing a dll with the application,
but then you also need update scripts when a new ve rsion is
released, and manage the users access rights within Windows
and the database, and people could try to run your
application with old DLLs. There are several disad vantages
to this scenario.

Or you can expose the functionality as a service , where one
service is a building block of functionality offere d by a
central server or cluster of servers. This buildin g block

or service can use other services, or dlls. What i s
important is that the functionality is centrally managed
and exposed to possible clients .

Some of the advantages are :
- by separating groups of functions (like objects) in to

services, each group of functions can be hosted on any
server on the network, including the same one, or o n
multiple servers under load-balancing

- easy to loose-couple services because generally pro xy
classes are used, so you can get intellisense, but the
implementation itself runs on the server

So what is WCF all about then? It’s about writing
distributed systems and services , and exposing the
functionality without being dependant on the method of
communication , so that the method of communication can be
freely chosen and changed.

A WCF Service is a program that exposes a collection of
Endpoints . Each Endpoint is a portal for communicating with
the world . Communication is handled by WCF, the logic how
to respond to the messages by the developer. This enables
the developer to develop logic that is not dependan t on the
way it is communicated.
Eg: TCP, Peer-to-Peer, SOAP, Rest, wether they are
authenticated or secured with certificates or not.

A Client is a program that exchanges messages with one or
more Endpoints. A Client may also expose an Endpoin t to
receive Messages from a Service in a duplex message
exchange pattern.

A message exchange pattern is a pattern how the client and
the service exchange messages. There are a number o f
message patterns. Rest uses normal HTTP, so that’s a
request-reply pattern: the browser or client requests the
page, and the HTTP server returns a reply.
WCF supports other patterns like Datagram (fire-and -forget)
and Duplex (two-way). Sessions are also supported.

WCF is extensible : if a protocol is not supported yet, you
can inject your own logic almost everywhere in the
framework to ensure minimal development costs for c hanges
in protocol, transport method and the likes. This is
called a Behaviour, more on that later.

Traditional WCF in .NET 3.0 did not know Restful fe atures,
these were added in .NET 3.5. These features inclu de ajax
support, Atom and RSS feeds and more.

This decision tree helps decide what (binding) tech nology
to use for your endpoints in a non-restful scenario (a
Restful scenario would always use the same type of setup
for endpoints, as you will see later).

(source:
http://weblogs.asp.net/spano/archive/2007/10/02/cho osing-
the-right-wcf-binding.aspx)

Don’t be overwhelmed by this diagram. You will fin d it
useful someday. When choosing a SOAP binding, be ca reful
what you choose, your choice has serious performanc e
implications. Always pick the fastest technology t hat
supports your goals. Prefer two fast, specific end points
to one do-everything endpoint over WS- so make that TCP
endpoint for .NET clients by all means.

That said, WCF is one-on-one faster than any techno logy it
replaces, including remoting, ASMX and most of all, WSE
2.0, where WCF is many times faster and results in the same
endresult.

For the full performance comparison :
http://msdn.microsoft.com/en-us/library/bb310550.as px

REST Fundamentals

REST is a resource-oriented architecture. The focus lies
on the data, not on actions. Content as we know it in WKB
is a prime example of a resource.
REST is opposed to SOAP. SOAP is a complex protocol for
interoperating, offering many layers of security,
versioning and more , and therefore is bloating the messages
by a large amount. Usually SOAP runs over HTTP, but in WCF
it can run over TCP or other connections too. SOAP bypasses
a lot of HTTP semantics and implements them again a s its
own. REST on the other hand is lightweight, simpler
protocol that follows the HTTP way of working, and all of
it semantics: a header value of GET to retrieve som ething,
PUT or POST to save something, and DELETE to delete a
resource. SOAP is more versatile, but very complex and
slow. REST is a lot faster and offers a lot less, a nd is
limited to HTTP.

Endpoints ‘R Us

A Service Endpoint has
• an Address ,
• a Binding ,
• and a Contract .

= The ABC of Communication Foundation

The Endpoint's Address is a network
addres or URI = WHERE.

The Endpoint's Contract specifies
what the Endpoint communicates and is
essentially a collection of messages
organized in operations that have
basic Message Exchange Patterns
(MEPs) such as one-way, duplex, and
request/reply. Generally we use an
interface with attributes to define a
contract = WHAT.

There are several types of contracts:
Service contracts
Describes which operations the client can perform o n the
service.
- ServiceContractAttribute

applied to the interface.
- OperationContractAttribute

applied to the interface methods you want to expose

Data contracts
Defines which custom data types are passed to and f rom the
service (high-level).
- DataContract

applied to the class that holds the data
- DataMember

applied the the class' properties you want to excha nge

- OR –

Message contracts
Interact directly with SOAP messages (low-level). U seful
when there is an existing message format we have to comply
with.

Fault contracts

Defines how the service handles and propagates erro rs to
its clients.

The Endpoint's Binding specifies how the Endpoint
communicates with the world including things like transport
protocol (e.g., TCP, HTTP), encoding (e.g., text, b inary),
and security requirements (e.g., SSL, SOAP message
security) = HOW.

A behavior is a class that implements a special interface
for "plugging into" the execution process . This is your
primary WCF extensibility and customization point if
something is not supported out of the box. = TWEAK
WHERE/WHAT/HOW
There are a few types of behaviours:

Service Behaviour
- Applies to the entire service runtime in an appli cation
- Implements IServiceBehavior.

Contract Behaviour
- Applies to the entire contract
- Implements IContractBehavior.

Operation Behaviour
- Applies to the service operation (think: method c all)
- Implements IOperationBehavior.

Endpoint Behaviour
- Applies to the endpoints
- Implements IEndpointBehavior
Creating behaviours is something you can try yourse lf after
this session, or can request another session on. T here are
3 ways:

Writing code
- Implement the behaviour interface
- Add your behaviour to the Behaviors collection of t he

related Start the service host.

Decorating with an attribute
(not for Endpoint behaviours)
- Implement the behaviour interface
- Inherit from Attribute
- Decorate the wanted class with your class.

Configuration

(not for Contract or Operation behaviours)
- Derive from BehaviorExtensionElement.
(see http://msdn.microsoft.com/en-gb/library/ms7301 37.aspx)

It’s important to note that behaviours are a server-side
only thing: the WCF client classes make no use of them.

In many projects behaviours won’t be needed, and al l you’ll
need is the ABC. It’s common however to need to tw eak
things a little. This is where we add another B – A BBC.
Almost ABBA but not quite.

All of this may seem a bit daunting at first. Don’t worry
about the specifics too much yet. You need will nee d to
know more about them when you use SOAP. There is mu ch to
know because WCF is so powerful. Simple scenario’s don’t
require you to know everything in-depth as you will see,
and if you know some basics you will get your servi ce
running in no time. For Rest scenario’s, knowing a ll the
details is not needed to get you started, so we won ’t
elaborate on them in this session.

Now lets get started in practise.

Exploring Your Hosting Options

On the Microsoft .NET platform, you have several ty pes of
managed Windows applications that you can create wi th
Microsoft Visual Studio.NET:

• WinForms applications
• Console applications
• Windows services
• Web applications (ASP.NET) hosted on Internet

Information Services (IIS)
• WCF services inside IIS 7.0 and WAS on Windows Vist a

or Windows Server 2008

WCF doesn't block you from running your service in any
other type of application as long as it provides yo u with a
.NET application domain. It all comes down to the
requirements you have for your host. To summarize t he
options, think about the following three generic ca tegories
of hosts for your WCF services:

• Self-hosting in any managed .NET application
• Hosting in a Windows service
• Hosting in different versions of IIS/ASP.NET

We will be self-hosting the service eventually in a console
window, creating your own webserver (sortof)!

Creating a new Service Library

• Create a new WCF Service Library .
• Delete both Service.cs and IService.cs

Why did we start a Service Library only to toss eve rything
out? Some project types add entries to menus. Lik e in
this case, it will add the ability to visually edit the
app.config.

Defining and Implementing a Contract

The easiest way to define a contract is creating an
interface or a class and annotating it with
ServiceContractAttribute .
For example:
using System.ServiceModel;

//a WCF contract defined using an interface
[ServiceContract]
public interface IMath
{
 [OperationContract]
 int Add(int x, int y);
}

Then create a class that implements IMath . That class
becomes the WCF Service class.For example:

//the service class implements the interface
public class MathService : IMath
{
 public int Add(int x, int y)
 { return x + y; }
}

Defining Endpoints

Endpoints can be defined in code or in config . We’ll be
using config.

<configuration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="mexSvcBehaviour">
 <serviceMetadata
httpGetEnabled="false" httpsGetEnabled="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings />
 <services>
 <service behaviorConfiguration="mexSvcBehaviour"
name="WCFRest.MathService">
 <endpoint
address="http://localhost:41000/MathService/Ep1"
binding="wsHttpBinding"
 contract="WCFRest.IMath" />
 <endpoint
address="http://localhost:41000/MathService/mex"
binding="mexHttpBinding"
 bindingConfiguration=""
contract="IMetadataExchange" />
 </service>
 </services>
 </system.serviceModel>
</configuration>

Generally config is preferred. In some project typ es you
will find the Edit WCF Configuration menu option by right-
clicking on the App.config.

Using this editor you can
easily set the options
needed for your service. If
not present run C:\Program
Files\Microsoft
SDKs\Windows\v6.0A\bin\ SvcCo
nfigEditor.exe on app.config
for the same editor.

For now, just copy-paste the
App.config from above into
yours.

The Test Client

If you run your service, you’ll see the test client is
automatically configured to run when you run the dll.

Note: the test client is not useful for Rest-tests. If you
started a SyndicationLibrary project, IE will be us ed
instead of the WCF Test Client.

Consuming the service

There are 2 ways to generate classes

SvcUtil.exe

C:\Program Files\Microsoft
SDKs\Windows\v6.0A\bin\ svcutil.exe
Useful tool for generating classes based on WDSL.

Add Service Reference

Like Add Reference except the menu option just below

• Add a new windows console project called WCFClient to

the solution.
• Add a service reference to the service in the solution

as shown above, use a namespace you’ll remember.
• Add a normal reference to System.ServiceModel
• In static void main, do the following:

 internal class Program
 {
 /// <summary>
 /// Starts the application
 /// </summary>
 /// <param name="args"></param>
 internal static void Main(string[] args)
 {
 MathClient client = new MathClient();
 Console.WriteLine(client.Add(10, 20));
 Console.ReadKey();
 }
 }

Tip: Should your application stop working at a late r point
because the client cannot figure out what binding t o
connect to, change the following line:
MathClient client = new MathClient("WSHttpBinding_I Math");

Hosting the service from console

• Add a new windows console project to your solution
called WCFHost.

• Add a reference in the project to your service
project.

• Add a reference to System.ServiceModel .
• Edit the properties of the WCF library project you

referenced, and go to the tab WCF Options . Then
untick the following option:

• Copy the App.config from the WCF library to your

WCFHost project.
• In static void main method of your WCFHost project

(type svm tab tab if you don’t have one) do the
following:

 internal static class Program
 {
 /// <summary>
 /// The main entry point for the applicatio n.
 /// </summary>
 internal static void Main()
 {

 using (ServiceHost serviceHost = new
ServiceHost(typeof(WCFRest.MathService)))
 {
 try
 {
 // Open the ServiceHost to star t listening for
messages.
 serviceHost.Open();

 // The service can now be acces sed.
 Console.WriteLine("The service is ready.");
 Console.WriteLine("Press <ENTER > to terminate
service.");
 Console.ReadLine();

 // Close the ServiceHost.
 serviceHost.Close();
 }
 catch (TimeoutException timeProblem)
 {
 Console.WriteLine(timeProblem.M essage);
 Console.ReadLine();
 }
 catch (CommunicationException commP roblem)
 {
 Console.WriteLine(commProblem.M essage);
 Console.ReadLine();

 }
 }
 }
 }

Now, make sure that both projects run when you star t:
Right-click the solution and select Properties
In the Startup Project list, change the action of the
WCFClient and the WCFHost to Start.

Then press the arrow-up button to make sure the WCF Host
starts before the WCFClient project.

Run the application. The service should be started, and you
should have ‘30’ as a reply from your service.

What’s happening?

• WCFHost is hosting the service in a windows
application, any application can now host services.

• WCFClient is connecting to that service via a
generated proxy class so you can compile and get
intellisense.

• WCFClient calls methods via the proxy, and the prox y
transparently calls the service.

Transforming the service into a REST
web service

Note: transforming the math service, with is an action-
oriented service (does something), to a Rest-service, which
is resource-oriented (CRUD on data), may not be a good
practise. What is shown here can hardly be seen as good
design, but here goes.

Back to your service project, and to the IMath interface.

• To see your options, you’ll have to first add a
reference to System.ServiceModel.Web .

• Then change the interface as follows:

 [WebInvoke(Method = "GET",
 ResponseFormat = WebMessageFormat.Json,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "?x={x}&y={y}")]
 int Add(int x, int y);

Note that you can use numbers
and strings in your interface
as parameters for the uri
template , but only if they’re
part of the querystring.
Inside the url itself, only
strings are supported. You can
return other classes or accept
classes from the HTTP body
instead (see later).

• Add configuration for a
binding as shown and name
it webHttpBindingConfig.

• Under Advanced, define a new service endpoint
behaviour , and add the webHttp element. Call it
webHttpEndpointBehaviour.

• Then finally, add a new service endpoint and fill i n
the fields as shown below.

• Save

Run the application as before, the two applications should
still work. While they are running, direct your fa vourite
browser to:
http://localhost:41000/MathService/web/?x=10&y=20
Notice how this is the url for the endpoint combine d with
the url template for the method call.
This should give you a json reply. If you download it, it
should contain ‘30’.

Congratulations on your first WCF Rest service. It can add
two numbers and tell you how much the result is.

Returning files or large amounts of
data

You can also return streams . Streams are recommended for
large amounts of data, or files you have on disk an d want
to return. For example, your webservice might retu rn links
to images, and you need to return the images too.

Add a method to the interface like this:
 [OperationContract]
 [WebInvoke(Method = "GET",
 ResponseFormat = WebMessageFormat.Json,
 BodyStyle = WebMessageBodyStyle.Bare,
 UriTemplate = "notepad")]
 Stream GetStream();
Note: you can also use the WebGet attribute wich is
specifically meant for GET requests. Try it out wit h a
WebGet attribute instead.

Then implement the new method in your concrete Math Service
class:
 public Stream GetStream()
 {
 return File.OpenRead(@"c:\windows\notep ad.exe");
 }

Run the application again and download your own not epad by
directing your browser to the following url:
http://localhost:41000/MathService/web/notepad

Note that there are a few service settings that limit the
size of the messages that can be sent or received . On top
of that, if you’re hosting inside of IIS, the IIS s erver’s
limits need to be adjusted too in web.config.

More specifically, common settings that you may nee d to
adjust to receive and send large files are the message
sizes for the endpoint, the service AND the client itself
(added through built-in behaviours), and possibly f or
ASP.NET, the HTTP request size .
<httpRuntime maxRequestLength="xxx"/>

Returning a feed

With WCF there are two standard feed formats suppor ted:
• Atom 1.0
• RSS 2.0

Generating a feed is done with the SyndicationFeed class.

• Create the SyndicationFeed instance
• Assign properties and content
• Return and format it using a formatter:

o Atom10FeedFormatter
o Rss20FeedFormatter

So let’s get started.

Add the following code to your IMath interface:
 [WebGet(UriTemplate = "feed?rss={rss}")]
 [OperationContract]
 SyndicationFeedFormatter GetFeed(bool rss);

Then implement the new method as following:
 public SyndicationFeedFormatter GetFeed(boo l rss)
 {
 List<SyndicationItem> items = new List< SyndicationItem>();

 // make link to notepad
 SyndicationItem item = new SyndicationI tem();
 item.Title = new TextSyndicationContent
 ("Notepad on server.");
 item.Links.Add(new SyndicationLink(new
Uri("http://localhost:41000/MathService/web/notepad ")));
 item.PublishDate = DateTime.Now;
 items.Add(item);

 SyndicationFeed feed =
 new SyndicationFeed
 ("Notepad Feed",
 "Feed with links to notepad.exe ",
 new Uri("http://www.google.be") , // alternate link
is google
 items);
 feed.LastUpdatedTime = DateTime.Now;
 if (rss)
 {
 return new Rss20FeedFormatter(feed) ;
 }
 return new Atom10FeedFormatter(feed);
 }

Run the application. The application works. If yo u direct
your browser to get the feed we just made:
http://localhost:41000/MathService/web/feed

Doh! An error occurred, and if you’d step through the
method call while debugging, no exception happens a t all.
The webpage doesn’t tell you anything useful. What gives?

Debugging WCF

To find out what’s wrong, lets enable a few things we do
not want to be active in a production scenario . We’ll only
edit the app.config of the WCFHost project, not the one
that produces our dll.

First, enable exception information. This is mostly for
SOAP.

Edit the service behaviour that’s in there by addin g the
serviceDebug element (the other one is to enable metadata
for the test client and Add Service Reference to ge nerate
classes from).

Then enable messagelogging and tracing .

Finally, Save your app.config and run the application
again.
Use your browser to visit the feed page again:
http://localhost:41000/MathService/web/feed

Then open the folder of the WCFHost project.

Notice the new files app_tracelog.svclog and
app_messages.svclog in the folder.

Open app_tracelog by doubleclicking on it.
Microsoft Service Trace Viewer opens. Notice the red lines :

These indicate errors. Let’s see what went wrong.

Select the part where the service throws an excepti on after
GetFeed. The exception is displayed right there:

Apparently we forgot to add the [ServiceKnownType]
attribute, because we said we were going to return a
SyndicationFeedFormatter , wich is the base class of
Atom10FeedFormatter and Rss20FeedFormatter. We ret urned an
Atom10FeedFormatter , but the service expected a
SyndicationFeedFormatter. The ServiceKnownType att ribute
allows us to specify derived classes off base class es or
interfaces used in our service.

Let’s fix that right now.

Looking up the ServiceKnownTypeAttribute class, the example
indicates that you place one on top of an interface . Your
IMath interface.
http://msdn.microsoft.com/en-
us/library/system.servicemodel.serviceknowntypeattr ibute.aspx

Add the attributes to the interface like this:
 [ServiceContract]
 [ServiceKnownType(typeof(Atom10FeedFormatter))]
 [ServiceKnownType(typeof(Rss20FeedFormatter))]
 public interface IMath

Close your browser window if it’s IE and start a ne w one.
Revisit the url to get your feed:
http://localhost:41000/MathService/web/feed
You should see your feed operational.

Don’t forget to turn message logging and tracing of f again,
and delete the service log files or you’ll spend mi nutes
parsing the files when you actually need them!

Accepting data

WCF can accept input from javascript/xml (in the bo dy) or
from the uri. The system looks for all the method
parameters that are not used in the uri template in the
body. Members from ajax (out of the box) or webforms (with

WCF Rest starterkit on codeplex: request a session if
interested) can be used for communication. For ajax, XML or
JSON can be used to fill in members of classes in t he
method call.

Ajax
Asynchrnonous Javascript and XML, used to update we bpages
without doing a full page postback and refreshing
everything, saving processing time and bandwith whe n used
well. Theoretically you’d have to use XML, but JSON is more
common. Ajaj doesn’t sound very reliable though.
JSON
JavaScript Object Notation. In short, the way JavaS cript
writes down object variables.
XML
Extensible Markup Language. Another way of writing
objects, in this context.

Note: WCF can cooperate with the ASP.NET scriptmanager and
ASP.NET ajax(If this is of interest to you, request a
session) . WCF can also cooperate with jQuery , the leading
JavaScript library for dynamic page manipulation. Both of
these topics are beyond the scope of this session. If it
talks XML, SOAP or JSON, they can interoperate.

First, download and install Fiddler from:
http://www.fiddler2.com/Fiddler2/version.asp
Fiddler is a HTTP debugger that allws you to craft custom
requests- many webmasters think Security Through Obscurity
is a good thing, but we’re not one of them.

Next we’ll prepare our service.
Create a new class named PostedData like this:
 [DataContract]
 public class PostedData
 {
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 }
Add the following to your service interface:
 [OperationContract]
 [WebInvoke(Method = "POST",
 ResponseFormat = WebMessageFormat.Json,
 BodyStyle = WebMessageBodyStyle.Wrapped Request,
 UriTemplate = "data")]
 void PostData(PostedData data);
Then implement the method in your service with the
following code:

 public void PostData(PostedData data)
 {
 if (data == null)
 {
 Console.WriteLine("null");
 return;
 }

 Console.WriteLine("Received: " + data.F irstName + " " +
data.LastName);
 }

Run your application.
Fire up Fiddler and create a custom request as shown:

And press the button labeled Execute .

You may be wondering why we’ve wrapped the sent dat a class
with FirstName and LastName properties in a parent object
with one property called ‘data’.

{"data": {"LastName":"Simpson", "FirstName", "Bart"} }
wrapped parent / object sent

This is because we’ve set
the bodystyle to
WrappedRequest in the
interface attribute for
the method call, wich can
be used to send in
multiple parameters.

If we set the bodystyle
to Bare , we would just
send the object and not a
wrapper object:

{"LastName":"Simpson",
"FirstName", "Bart"}

Try it out now!

Sending JSON with C#

Working with REST services cannot be done with Add Service
Reference like you could with SOAP. However, there are
classes to help you get where you need to:

• WebHttpRequest
Makes HTTP requests where you place the body conten ts
in a Stream and read the reply from another Stream.

• DataContractJsonSerializer
Serializes a type to JSON

Add a new windows console project called WCFJsonPost to the
solution. Set it up to start when you run the appl ication:

Add a reference in your project to System.ServiceModel.Web
and System.Runtime.Serialization .

Then add the following code to your Program class:
 internal class Program
 {
 internal static void Main(string[] args)
 {
 Thread.Sleep(10000);
 TestWcfRestPost();
 }

 private static void TestWcfRestPost()
 {
 // create the serializer that saves cla sses as JSON
 DataContractJsonSerializer serializer = new
DataContractJsonSerializer(typeof(PostedData));
 PostedData dataToPost = new PostedData
 {
 FirstNa me = "Bart",
 LastNam e = "Simpson"
 };
 // set up our request
 HttpWebRequest request =
(HttpWebRequest)HttpWebRequest.Create(@"http://loca lhost:41000/MathServ
ice/web/data");
 request.Accept = "*/*";
 // we're going to post JSON
 request.ContentType = "application/json ";
 request.Method = "POST";
 using (Stream stream = request.GetReque stStream())

 {
 // send data
 serializer.WriteObject(stream, data ToPost);
 stream.Flush();
 }

 // get the response
 HttpWebResponse response =
(HttpWebResponse)request.GetResponse();
 using(Stream stream = response.GetRespo nseStream())
 {
 using(TextReader reader = new Strea mReader(stream))
 {
 Console.WriteLine(reader.ReadTo End());
 }
 }
 }
 }
Run the application to see the same results as the ones you
had with Fiddler, that is, if you have put the bodystyle to
Bare at the end of previous topic.

Further reading

Basic WCF Programming
http://msdn.microsoft.com/en-us/library/ms731067.as px
WCF Syndication
http://msdn.microsoft.com/en-us/library/bb412202.as px
WCF Rest
http://msdn.microsoft.com/en-us/library/bb412169.as px
Rest in general (O’Reilly Restful Web Services)
http://oreilly.com/catalog/9780596529260

or find any good book to help you get started. WCF is not
going away, and more and more Microsoft technologie s use
it. In a few years ASP.NET ASMX web services will have
disappeared in favour of WCF services. Try to look at the
book contents before hand though, most books on WCF hardly
focus on restful web service development.

Glossary (from MSDN)

message
A message is a self-contained unit of data that may consist
of several parts, including a body and headers.

service
A service is a construct that exposes one or more
endpoints, with each endpoint exposing one or more service
operations.

endpoint
An endpoint is a construct at which messages are se nt or
received (or both). It comprises a location (an add ress)
that defines where messages can be sent, a specific ation of
the communication mechanism (a binding) that descri bed how
messages should be sent, and a definition for a set of
messages that can be sent or received (or both) at that
location (a service contract) that describes what m essage
can be sent.

An WCF service is exposed to the world as a collect ion of
endpoints.

application endpoint
An endpoint exposed by the application and that cor responds
to a service contract implemented by the applicatio n.

infrastructure endpoint
An endpoint that is exposed by the infrastructure t o
facilitate functionality that is needed or provided by the
service that does not relate to a service contract. For
example, a service might have an infrastructure end point
that provides metadata information.

address
An address specifies the location where messages ar e
received. It is specified as a Uniform Resource Ide ntifier
(URI). The URI schema part names the transport mech anism to
use to reach the address, such as HTTP and TCP. The
hierarchical part of the URI contains a unique loca tion
whose format is dependent on the transport mechanis m.

The endpoint address enables you to create unique e ndpoint
addresses for each endpoint in a service, or under certain
conditions share an address across endpoints.

binding
A binding defines how an endpoint communicates to t he
world. It is constructed of a set of components cal led
binding elements that "stack" one on top of the oth er to
create the communication infrastructure. At the ver y least,
a binding defines the transport (such as HTTP or TC P) and
the encoding being used (such as text or binary). A binding
can contain binding elements that specify details l ike the
security mechanisms used to secure messages, or the message
pattern used by an endpoint. For more information, see
Configuring Windows Communication Foundation Servic es.

binding element
A binding element represents a particular piece of the
binding, such as a transport, an encoding, an
implementation of an infrastructure-level protocol (such as
WS-ReliableMessaging), or any other component of th e
communication stack.

behaviors
A behavior is a component that controls various run -time
aspects of a service, an endpoint, a particular ope ration,
or a client. Behaviors are grouped according to sco pe:
common behaviors affect all endpoints globally, ser vice
behaviors affect only service-related aspects, endp oint
behaviors affect only endpoint-related properties, and
operation-level behaviors affect particular operati ons. For
example, one service behavior is throttling, which
specifies how a service reacts when an excess of me ssages
threaten to overwhelm its handling capabilities. An
endpoint behavior, on the other hand, controls only aspects
relevant to endpoints, such as how and where to fin d a
security credential.

system-provided bindings
WCF includes a number of system-provided bindings. These
are collections of binding elements that are optimi zed for
specific scenarios. For example, the WSHttpBinding is
designed for interoperability with services that im plement
various WS-* specifications. These predefined bindi ngs save
time by presenting only those options that can be c orrectly
applied to the specific scenario. If a predefined b inding

does not meet your requirements, you can create you r own
custom binding.

configuration versus coding
Control of an application can be done either throug h
coding, through configuration, or through a combina tion of
both. Configuration has the advantage of allowing s omeone
other than the developer (for example, a network
administrator) to set client and service parameters after
the code is written and without having to recompile .
Configuration not only enables you to set values li ke
endpoint addresses, but also allows further control by
enabling you to add endpoints, bindings, and behavi ors.
Coding allows the developer to retain strict contro l over
all components of the service or client, and any se ttings
done through the configuration can be inspected and if
needed overridden by the code.

service operation
A service operation is a procedure defined in a ser vice's
code that implements the functionality for an opera tion.
This operation is exposed to clients as methods on a WCF
client. The method may return a value, and may take an
optional number of arguments, or take no arguments, and
return no response. For example, an operation that
functions as a simple "Hello" can be used as a noti fication
of a client's presence and to begin a series of ope rations.

service contract
The service contract ties together multiple related
operations into a single functional unit. The contr act can
define service-level settings, such as the namespac e of the
service, a corresponding callback contract, and oth er such
settings. In most cases, the contract is defined by
creating an interface in the programming language o f your
choice and applying the ServiceContractAttribute at tribute
to the interface. The actual service code results b y
implementing the interface.

operation contract
An operation contract defines the parameters and re turn
type of an operation. When creating an interface th at
defines the service contract, you signify an operat ion
contract by applying the OperationContractAttribute
attribute to each method definition that is part of the
contract. The operations can be modeled as taking a single
message and returning a single message, or as takin g a set

of types and returning a type. In the latter case, the
system will determine the format for the messages t hat need
to be exchanged for that operation.

message contract
A message contract describes the format of a messag e. For
example, it declares whether message elements shoul d go in
headers versus the body, what level of security sho uld be
applied to what elements of the message, and so on.

fault contract
A fault contract can be associated with a service o peration
to denote errors that can be returned to the caller . An
operation can have zero or more faults associated w ith it.
These errors are SOAP faults that are modeled as ex ceptions
in the programming model.

data contract
The data types a service uses must be described in metadata
to enable others to interoperate with the service. The
descriptions of the data types are known as the dat a
contract, and the types can be used in any part of a
message, for example, as parameters or return types . If the
service is using only simple types, there is no nee d to
explicitly use data contracts.

hosting
A service must be hosted in some process. A host is an
application that controls the lifetime of the servi ce.
Services can be self-hosted or managed by an existi ng
hosting process.

self-hosted service
A self-hosted service is one that runs within a pro cess
application that the developer created. The develop er
controls its lifetime, sets the properties of the s ervice,
opens the service (which sets it into a listening m ode),
and closes the service.

hosting process
A hosting process is an application that is designe d to
host services. These include Internet Information S ervices
(IIS), Windows Activation Services (WAS), and Windo ws
Services. In these hosted scenarios, the host contr ols the
lifetime of the service. For example, using IIS you can set
up a virtual directory that contains the service as sembly

and configuration file. When a message is received, IIS
starts the service and controls its lifetime.

instancing
A service has an instancing model. There are three
instancing models: "single," in which a single CLR object
services all the clients; "per call," in which a ne w CLR
object is created to handle each client call; and " per
session," in which a set of CLR objects are created , one
for each separate session. The choice of an instanc ing
model depends on the application requirements and t he
expected usage pattern of the service.

client application
A client application is a program that exchanges me ssages
with one or more endpoints. The client application begins
by creating an instance of a WCF client and calling methods
of the WCF client. It is important to note that a s ingle
application can be both a client and a service.

channel
A channel is a concrete implementation of a binding
element. The binding represents the configuration, and the
channel is the implementation associated with that
configuration. Therefore, there is a channel associ ated
with each binding element. Channels stack on top of each
other to create the concrete implementation of the binding:
the channel stack.

WCF client
A WCF client is a client-application construct that exposes
the service operations as methods (in the .NET Fram ework
programming language of your choice, such as Visual Basic
or Visual C#). Any application can host a WCF clien t,
including an application that hosts a service. Ther efore,
it is possible to create a service that includes WC F
clients of other services.

A WCF client can be automatically generated by usin g the
ServiceModel Metadata Utility Tool (Svcutil.exe) an d
pointing it at a running service that publishes met adata.

metadata
The metadata of a service describes the characteris tics of
the service that an external entity needs to unders tand to
communicate with the service. Metadata can be consu med by
the ServiceModel Metadata Utility Tool (Svcutil.exe) to

generate a WCF client and accompanying configuratio n that a
client application can use to interact with the ser vice.

The metadata exposed by the service includes XML sc hema
documents, which define the data contract of the se rvice,
and WSDL documents, which describe the methods of t he
service.

When enabled, metadata for the service is automatic ally
generated by WCF by inspecting the service and its
endpoints. To publish metadata from a service, you must
explicitly enable the metadata behavior.

security
Security in WCF includes confidentiality (encryptio n of
messages to prevent eavesdropping), integrity (the means
for detection of tampering with the message),
authentication (the means for validation of servers and
clients), and authorization (the control of access to
resources). These functions are provided by either
leveraging existing security mechanisms, such as TL S over
HTTP (also known as HTTPS), or by implementing one or more
of the various WS-* security specifications.

transport security mode
Security can be provided by one of three modes: tra nsport
mode, message security mode, and transport with mes sage
credential mode. The transport security mode specif ies that
confidentiality, integrity, and authentication are provided
by the transport layer mechanisms (such as HTTPS). When
using a transport like HTTPS, this mode has the adv antage
of being efficient in its performance, and well und erstood
because of its prevalence on the Internet. The disa dvantage
is that this kind of security is applied separately on each
hop in the communication path, making the communica tion
susceptible to a "man in the middle" attack.

message security mode
Message security mode specifies that security is pr ovided
by implementing one or more of the security specifi cations,
such as the specification named "Web Services Secur ity:
SOAP Message Security" (available at
http://go.microsoft.com/fwlink/?LinkId=94684). Each message
contains the necessary mechanisms to provide securi ty
during its transit, and to enable the receivers to detect
tampering and to decrypt the messages. In this sens e, the
security is encapsulated within every message, prov iding

end-to-end security across multiple hops. Because s ecurity
information becomes part of the message, it is also
possible to include multiple kinds of credentials w ith the
message (these are referred to as claims). This app roach
also has the advantage of enabling the message to t ravel
securely over any transport, including multiple tra nsports
between its origin and destination. The disadvantag e of
this approach is the complexity of the cryptographi c
mechanisms employed, resulting in performance impli cations.

transport with message credential security mode
This mode uses the transport layer to provide
confidentiality, authentication, and integrity of t he
messages, while each of the messages can contain mu ltiple
credentials (claims) required by the receivers of t he
message.

WS-*
Shorthand for the growing set of Web Service (WS)
specifications, such as WS-Security, WS-ReliableMes saging,
and so on, that are implemented in WCF.

