
SOCKETLIB

SocketLib is an event based, semi-asynchronous socket stream. It derives from standard C++

sockets, therefore, all extractors (>>) and inserters (<<) can be used. Semi-asynchronous method

allows programmer to define event handler to handle incoming data asynchronously without taking

the ability to read blocking data. The main aims of this system is to reduce difficulty of sockets

programming and make socket systems a lot more C++ friendly. The second aim is to make the

system small enough to allow it to be integrated with any project. In fact, there are many

frameworks that allow easy to use sockets. However, as far as I have seen, none work in semi-

asynchronous mode. Moreover, most socket libraries are a part of a larger framework requiring you

to add hundreds of files to your project.

Normally working with sockets in C or C++ requires knowledge on BSD sockets API or

Windows Sockets (WinSock) API (probably both to make your program cross platform), system

calls, threads or processes. This has two implications, the code written will require additional work

to be cross platform; and you have to do a lot of learning. An intuitive C++ socket stream will take

minutes to understand opposed to hours of reading for the other option.

Second improvement over BSD or WinSock alternative is using C++ classes and namespaces.

Especially WinSock heavily uses macros which disturbs C++ coding and might cause problems. For

instance WinSock has the macro which replaces errno with *errno(), effectively disallowing

you to use a variable named errno.

My socket library uses socketlib as namespace, every class, type and enumeration resides in this

namespace. However, there is another namespace (networking) contains network related

information, this namespace is also defined in socketlib namespace. Networking contains three

enumerations and their respective types; Protocol and ProtocolType, Port and PortNumber,

Family and FamilyType. These types are used in other functions as input parameters or results.

Requirements

SocketLib requires GGE/Utils package and pThread library to work. GGE/Utils package is

included in the project as well as pThread headers. However, you may need to copy pthread32.dll to

Windows directory Currently its only tested on Windows XP, however, it is written and designed to

work on *nix class operating systems as well. In fact, pThread library is native to POSIX

compatible operating systems such as Linux, Unix, or Mac-OS; however, there is an compatibility

system for Windows too. Currently system is compiled on Microsoft C++ Compiler 14.0 (which is

shipped with Visual Studio 2005).

HostInfo and AddressInfo

Our first two classes are HostInfo and AddressInfo. HostInfo resolves and contains all

address information that a host has. It is basically a collection of AddressInfo, where each

AddressInfo holds network related information about a specific address. AddressInfo allows easy

access to IP address and family (IP v4, IP v6). However, other information can be accessed by

obtaining raw addrinfo pointer.

Resolve function of HostInfo class can be used to resolve a domain name (or an IP address).

There is also StartResolve function which can be used for asynchronous checking; whenever

resolve finishes, ResolveComplete event is called. HostInfo can be used as a Boolean value to

check if the resolve is succeeded. The following example illustrates the use of this system. It can

print more than one IP address for a server.

#include "SocketLib/HostInfo.h"
#include <iostream>
using namespace socketlib;
using namespace std;
void resolved(HostInfo &info) {
if(!info) { //HostInfo can be converted to bool to check result

cout<<"Cannot resolve host"<<endl;
return;

}

foreach(AddressInfo, ai, info) { //Collection iteration
cout<<endl<<"IP address: "<<ai->IPAddress()<<endl;

}
}

void main() {
HostInfo h;
h.ResolveComplete.Register(&resolved);
h.StartResolve("cmpe.emu.edu.tr");
cin.sync();
cin.ignore(1);

return 0;
}

TCPServer

Currently only TCP side of the system is complete, which is enough to implement required

functionality in this assignment. TCPServer is the class that listens and accepts incoming

connections. First, Listen function should be called to bind the server to a specific port. Accept

procedure can work synchronously or asynchronously. Asynchronous mode fires

ConnectionReceived event. If desired, this event can be fired in a different thread.

CallConnRcvedEvtInNThrd property controls this behavior. ConnectionReceived event uses

TCPServer::accept_params for parameter object which contains the accepted

TCPSocketStream. ConnectionLost event is fired when one of the clients looses connection.

ConnectionLost event uses TCPServer::connlost_params for parameter object which contains

the disconnected TCPSocketStream. This system also provides safe resource allocation, i.e.

whenever server object is destroyed, all the connections will be disconnected (calling

ConnectionLost events), accept thread is terminated, port is released, and all resources are freed.

The following is the list of the TCPServer methods.

• Listen(port): Binds the server to the specified port, it can be a PortNumber (can be
obtained from networking::Port::portname syntax), integer port number, or a port
representation string (like http, ftp, etc... numbers are also accepted)

• StartAccept(): Start accepting new connections asynchronously
• TCPSocketStream &Accept(Timeout): Accepts a connection, if Timeout is not

specified, this function will wait indefinitely until a connection is received or socket closed.
• TCPServer::Status getStatus(): This function returns the current status of the

server. It can be one of the following:
◦ Idle: server performs no operations
◦ Listening: server is listening to the specified port, but not accepting any connections
◦ Accepting: server is asynchronously accepting connections
◦ BlockingAccept: server is blocked in an Accept function

• StopListening(): Closes the server socket, effectively unbinding the port and stopping
asynchronous accept thread, if running

• CloseAll(): Closes all connections
• int LiveConnections(): Returns the total number of live connections

Following is a simple server that sends “Hello” to every connected client and disconnects.

#include <iostream>
#include "SocketLib/TCPServer.h"
using namespace std;
using namespace socketlib;
void connect(TCPServer::accept_params params) {
cout<<"Connection received from "<<params.addrinfo.IPAddress()<<endl;

params.socket<<"Hello"<<endl;
params.socket.Close();

}

int main() {
TCPServer server;
server.Listen("444");
server.StartAccept();
cin.sync();
cin.ignore(1);

return 0;
}

TCPSocketStream / TCPClient

This class has two different names, TCPSocketStream and TCPClient. Its main purpose is to

stream data between two sockets. Its second aim is to be the client, connecting to a server.

Therefore, it contains connectivity functions as well. This class is derived from standard I/O stream.

This means that any object that can be inserted or extracted from stream can be inserted and

extracted from this class. However, sockets does not support seeking, therefore, any seek or position

request will fail. If you try to send data while the socket is closed, you will get a

SocketException exception, which might be handled by stream system and translated to failed

status. However, if the read operation fails due to loosing connection, you will receive EOF

notification. Moreover, connection is closed if the object gets destroyed.

Buffer class of this stream has two different buffers for incoming and outgoing data. So both

sending and receiving can be performed at the same time. However, Microsoft headers for stream

operations uses a single Mutex for both input and output buffers. Because of this the advantage of

using sending and receiving at the same time is lost if Microsoft headers are used.

Standard inserters is the preferred method to send data to recipient. Moreover, WriteBinary
function is added to the system for convenience. For any simple object, you may use this function to

send its entire data to the other end. Data will be sent on an explicit flush request or whenever

buffer is full. endl stream modifier also flushes the buffer, so it can be used to terminate commands

that you need to send to recipient. Send requests are always synchronous, but after data is

transferred to operating system, it is queued for sending; your application will not wait for the entire

send operation. There is one important point about TCP sockets, when sending data, data might be

needed to break into segments. The size of the segments is controlled by operating system or

underlying hardware; therefore, there is no way to be sure that every packet is sent in one send

request.

Receiving data works semi-asynchronous mode. In this mode there is one thread always waiting

data to read, another thread is used to fire Received event. First thread starts whenever connection

is established and stopped when its closed. Second thread is started when data is received and no

requests are made to receive it. This second thread fires Received event and waits for its

termination. Parameter object of Received event contains the size of the receive buffer and a

reference type Boolean variable called shouldrecall. If this variable is set to true inside the

event handler and there is still data remaining in the buffer, Received event is fired again. This

method can be employed to read only one frame every time Received event is fired, delaying

remaining data to the second call. Inside the Received event, programmer should read data using

extractors, get, getline, read or ReadBinary functions. Extraction operations are

synchronous, but, since there is data inside the buffer (whenever Received event is fired, buffer

definitely contains data) and the size of the data can be determined using the event parameters this

method can be used like asynchronous mechanism. An important note is event thread is separate

from the main thread and it might be required to synchronize threads.

The following is the list of all methods and variables of TCPSocketStream.

• bool Connect(host, port): Resolves and connects to the given host and port, this
function works synchronously, asynchronous version is a future work. If it cannot resolve
the host or connection fails, this function will return false; if another error occurs it will
throw a SocketException.

• bool Connect(addressinfo): Connects to the given host using information from an
AddressInfo class. For this system to work, you must specify port parameter of resolve
function in HostInfo class.

• bool isConnected(): Returns whether this socket is connected.

• Close(): Closes the socket, ending accept thread. This function is safe to be used in the
receive event thread, however, you cannot destroy calling socket in receive event thread.

• int Available(): Amount of data available in the read buffer.

• Disconnected Event: Fires whenever socket is disconnected. Has no specific parameters.

Following is a simple client that connects to the server and display and received data.

#include <iostream>
#include "SocketLib/TCPSocketStream.h"
using namespace std;
using namespace socketlib;
void received(TCPSocketStream::accept_received_params params,

TCPSocketStream &socket) {
int cnt=params.available;
if(cnt>1024) {

cnt=1024;
}
char data[1024];
socket.read(data, cnt);
cout.write (data, cnt);

params.shouldrecall=true; //If data in the buffer is larger than 1k
this event handler will be called again

}

void disconnected() {
cout<<"Disconnected."<<endl;

}

int main() {
TCPSocketStream client;
client.Received.Register(&received);
client.Disconnected.Register(&disconnected);
client.Connect("localhost", "444");
cin.sync();
cin.ignore(1);

return 0;
}

	SocketLIb
	Requirements
	HostInfo and AddressInfo
	TCPServer
	TCPSocketStream / TCPClient

